
 1

ROSETTA LANDER SOFTWARE SIMULATOR

Gábor Tróznai (troznaig@freemail.hu), Attila Baksa (baksa.attila@syncnet.hu), Sándor Szalai (szalai@sgf.hu), Bálint Sódor
(simplesimon@freemail.hu)

SGF Ltd. (Space and Ground Facilities, Budapest, Hungary)

Keywords: Rosetta, lander, space research, software, simulator, XML, C++, transputer

Abstract
The software simulator (LSS) was created for Ground simulation of the Rosetta Lander, Philae. The system
consists of five personal computers and several Real-Time Message Handler cards. The simulation of the
behavior of the on-board equipments is realized using XML syntax based simulation script language. During the
design time of LSS the most important aspect was the high level of flexibility. Using the realized solutions it is
able to implement simulation of other complex systems.

The aim of the Rosetta mission is to approach and
observe the comet Churyumov-Gerasimenko. The
role of the lander unit is to make studies on the
surface of the comet. For the thoroughgoing
measurements there are eight scientific instruments
and seven subsystems integrated into the small
lander unit. All of the equipments on the lander
controlled by a unique developed, embedded on-
board computer. The scientific operation of the
lander is managed by eight application tasks of the
multi-tasking operating system of this computer.
The mission of the lander has two phases. The
primary mission takes few days after landing onto
the comet’s surface. During this phase the main goal
is to accomplish detailed measurements until the
main batteries become flat. During the secondary
phase the aim is to analyze the behavior of the comet
approaching the Sun. These measurements will be
performed with a lower intensity reclined upon the
energy gain of the solar cells. The secondary phase
is planned to take several month.

Figure 1. The lander unit of the Rosetta space-
probe called Philae.

TASKS

 The high level of complexity, and the long
lifetime of the Rosetta space-probe necessitate to
have a system, which provides an easier way to
perform the following tasks all along the 10 years
while Rosetta is performing the mission:

• Training of the operator staff
• Testing operational schedules
• Performing long term tests
• Performing endurance tests
• Performing data transfer tests
• Running and testing telecommand

sequences
• Testing of the software of the on-board

computer, especially in cases of non-
nominal situations, which are dangerous to
execute on the real lander unit nor the
ground reference model.

• Reproduction of the events recorded from
the probe.

The best solution to issue the tasks above is

a software based simulation of the probe. So the
SGF Ltd. in cooperation with the German Aerospace
Center (DLR) has developed the Rosetta Lander
Software Simulator (LSS) .

THE ENVIRONMENT OF THE LSS

 All of the equipments on the Philae are
connected to the central computer of the lander unit
called CDMS (Command and Data Management
System). The CDMS is in connection with the on-
board computer of the Rosetta probe (On-board Data

 2

Handling System - OBDH) via the Electrical
Separation System (ESS) of the lander. The
communication has two possible ways. During the
space flight the lander and the orbiter are connected
together via cable, but after separation they will use
a radio (RF) connection. The orbiter has a high
power radio system to keep contact with the Ground
Segment which is communicating through big radio
telescopes on Earth. The received and transmitted
signals go through the Spacecraft Interface
Simulator (SIS), and arrive to the Lander Control
Centre System (LCCS). All the system elements use
the Rosetta Common Packetized Protocol (RPRO) to
transfer data. The LCCS receives and handles the
scientific data coming from the Philae, and initiates
sending of the telecommands to the lander. The
structure of LSS should mirror this communication
chain, and should provide authentic interface on
proper points of the system. This interface has the
following elements:

1. Software simulation of the on-board
equipments on Philae

2. On-board computer of Philae (CDMS)
3. Software simulation of Rosetta ESS
4. Simulation of Rosetta OBDH communication

interface

Figure 2. The environment of the software
simulator

THE STRUCTURE OF LSS

 The software simulator is a shared computer
network, which consist of several computers. In case
of the Rosetta Lander the several equipments are
simulated by four portable computers. The system
has a fifth dedicated computer to clamp, and
synchronize the simulations, and to store the
produced data stream. The low level and high speed

simulations of the different equipments are
accomplished by unique developed hardware
elements. These are the Real-Time Message
Handlers, which are connected to the computers via
RS-232 serial lines. The simulator of the on-board
computer of the lander unit (CDMS) is realized by a
one-to-one copy of the real CDMS, because it would
be very difficult to realize the simulation of the full
functionality, and the real reaction time of the
computer by the reason of the complexity of CDMS
and it’s real-time multitasking operating system. The
simulator computers are connected to each other via
Ethernet (TCP/IP) network, and it is possible to
connect them together through the internet.

Figure 3. The structure of LSS network

HARDWARE ELEMENTS

 The Real-Time Message Handler (RIU)
cards are developed by the SGF Ltd. in the middle
nineties. They are IBM PC card sized
multifunctional signal level simulators with
embedded processors based on transputers. The
name “transputer” is a combination of words
transistor and computer. These processors
produced by Inmos (England) in the late eighties.
Both of the 16 bit and 32 bit versions has four serial
data-transfer channels to connect more processors
together, and the internal architecture makes them
very suitable for parallel processing. As a matter of
fact these RISC processors were the first real
products for parallel processing. They can be
programmed using OCCAM or C languages, which
support the parallel processing on advanced level. In
spite of many beneficial properties, the worldwide

 3

spread of the Intel processor family has
unfortunately meant the end of the career of these
type of processors. The simulator cards with
embedded processors are connected to computers
via RS-232 serial lines. The built-in memories on
the RIU cards buffer the data for both direction of
data streaming, and makes it possible to initially
upload simulated data stream for real-time reactions.

Figure 4. The Real-Time Message Handler cards

SOFTWARE ELEMENTS

The software elements of the simulator
system can be classified as follows:

1. Simulation of the equipments on the Lander
2. Software elements for special tasks

The simulation of the equipments on the
PhilaeLander

The simulations of the lander equipments are
executed by General Unit Models (GUM) in
cooperation to the Real-Time Message Handler
cards. Each equipment has a GUM, but the different
GUMs can be grouped, so the simulation software
executed by a PC can manage more then one
equipment’s simulation simultaneously. The
grouping can be modified freely, but in general the
simulated system determines the formed groups. It is
not practical to run simulations on the same PC
which are requiring big amount of computing
capacity. In Rosetta LSS the following groups have
been formed:

1. PC:
• Power Sub System (PSS)
• Thermal Control Unit (TCU)

2. PC:
• Active Descent System (ADS)
• Landing Gear (LG)
• Anchor
• Sampling and Drilling System (SD2)

3. PC:
• Scientific equipments (APX,

CIVA/ROLIS, CONSERT, COSAC,
MUPUS, PTOLEMY, ROMAP,
SESAME)

An XML based script language was defined for
describing the behavior of the on-board equipments.
It is possible to make unique simulation XML file
for each scientific unit and servicing subsystem.
These files are validated, interpreted and executed
by the General Unit Model. All of the equipment
models have its own schedule which are executed in
different threads. So they run the commands defined
in the simulation files independently from each
other. The simulation file makes it easy to describe
the real operation modes of the onboard equipments
and the transitions from one mode to other. The
grouping of the simulation models, and their
parameters can also be described in an XML based
configuration file. With these files it is possible to
change dynamically the composition of simulations,
including the PC - equipment simulation
assignments without to change the program source
code. Beyond the XML syntax, the configuration
and simulation descriptor files follow a script
language syntax as well. The files are validated and
checked by the simulator module before executing
the file. Accordingly when a new element is needed
to be integrated into the system, then it is enough to
define the behavior in a simulation script file. The
creation and usage of this script file is easy to learn
so it is not requires advanced developer skills. For
the deeper developing there is programming
interface (API), which makes it possible to realize
extremely special equipments which would be very
difficult to simulate using the script language only.
In these cases the developer can implement the unit
in C++ language and could integrate it easily to the
system by using the API library functions. Of course
this way of simulation requires software developer
skills. In the LSS system there is only one module
called ESS-Bridge (ESS and SIS simulator) which is
not using the general approach of the XML script
language. The charge of this model is to simulate
the behavior of ESS, which ensures the
communication between the lander’s central
computer (CDMS) and ground simulator of the
orbiter’s onboard computer (OBDH and SIS) on
both cable and RF connection using RTS protocol.

 4

Software elements for special tasks

These software elements manage special tasks in the
LSS system.

LSS Server

The central software element of the simulation
system’s TCP/IP segment is the LSS Server. All
software module in the system is connected with
each other through the server.
The main tasks of the server are:

• Ensure communication channels between
the software modules

• Store the data generated the software
modules (Server Data Pool)

The elements communicate with each other

on the TCP/IP network according to a special
protocol called LSS Data Interchange Protocol
(LSDIP) developed especially for this system. The
protocol uses data packets with a dynamically
changing size called Protocol Control and Data
Packet (PCDP). These packets consist of a fix sized
header and a changing sized data field. Several
parameters defined in the header, such as the ID of

the sender and receiver modules, information about
the acknowledge request, the type and subtype of the
packet, special parameters according to the type of
the packet, the size of the data field, and a checksum
to detect data transfer errors. The modules use such
packets (PCDP) to send data to other modules. One
of the server’s tasks is to handle and log the
communication and data transfer on the channels
opened by the modules.

The Server Data Pool is a central database,
which stores all the data that the modules need for
running their simulation tasks. Each module can
read or write into this database with the right
PCDPs. The server traces the changes of the data
content, and can send notice about the change for the
modules, which are registered in the server’s “Notify
on Change” service.

The structure of the database can be changed
even on the fly during the execution of the
simulations. There is a software module in the
system called Simulation Data Pool
Presentation/Editor (SDPPE) that handles the
database structure.

Figure 5. The internal connections between software elements

 5

 Simulation Data Pool Presentation/Editor
(SDPPE)

This module supports the construction of the

database structure, handles the initial values for the
fields defined in the data pool. The initial values can
be read from files as well. Thanks to this feature it is
possible to save a snapshot about the database, and
save the current state of the simulation. After reload
this files the simulation can be continued at a later
time. This software module provides an additional
feature to view all parts of the data pool, and all data
field in the data pool can be edited too. The server
also allows the user to view the data content of the
data pool, but the editing of the fields can be
performed by this module.

Another role of SDPPE is to control (stop /
suspend / start / lock data / etc.) the simulations. The
unit of the stored data in the data pool is „word” (2
bytes). These words are raw data. In general case
one word can store different data. For example the
different bits in a word may have different
meanings. In the case of spacecrafts the last eight
bits of a word can store a temperature value, the next
two bits can store the value of a four state signal,
and the other bits can store the values of two state
signals. This strategy is used to maximize the
utilization of the onboard memories. In the
mentioned example to get the right temperature
value a mask has to be applied for the raw data. The
masking provides the raw temperature data. Finally
a mathematical formula has to be applied to
calculate the real temperature data. This formula is a
linear expression (calibration formula) in most
cases. The formula and the mask are assigned to the
signal, which need to be decoded. The coding and
decoding raw data are managed by more modules in
the system, where it is needed to see or handle
calibrated data.

CDMS Memory Tool IF (CMTIF)

The role of the CMTIF execute read and write

operations in the CDMS memory according to the
incoming requests. This module has direct
connection to the internal memory handler module
of the CDMS via an RIU card. The requests can
arrive from any of the modules of LSS connected to
the network. The CMTIF sends back the result to the
requester module on the network. It is possible to
initiate similar requests from the graphical user
interface of CMTIF as well.

CDMS Memory Decoder (LDEME)

There is a more sophisticated tool for

displaying the memory content of the CDMS called
CDMS Memory Decoder (LDEME), which
cooperates to CMTIF. This module is connected to
CMTIF only on TCP/IP network, receives the data
sent back by CMTIF, decodes and displays the data
according to the data content. With this tool the
memory content of the CDMS can be easily
surveyed and interpreted. The communication
between these modules is managed by the server. In
the present system this is the only communication
which requires the flexible timeout handling
implemented in the server. The reaction time of the
CDMS may be relative slow, because the main task
of the CDMS is not to serve the requests of the
CMTIF, and LDEME. In the server can be set a
parameter for each module that determines the
timeout for the module’s requests but the amount of
the data in the reply for an LDEME request has a
great variety.

Obviously the requests with bigger data size
need bigger timeout, so it was necessary to
implement a data size dependent dynamic timeout
handling besides the fix timeout handling. With this
feature it became possible to set data size dependent
timeout value for different modules in place of fix
timeout. In this case the server checks the amount of
the requested data and sets the timeout value unique
for the packet. This is the situation in the case of
LDEME and CMTIF, because the CMTIF waits for
the CDMS complete the request, and after receiving
the whole data it sends back to LDME.

Graphical data tracer (GraphIT)

This software module visualizes the actual

data stored in the data pool in a user friendly form. It
is able to trace the changes of data pool sections and
draw graphs to show the changes in real time. The
graphs can be grouped to draw different graphs into
one chart. It is freely adjustable which parts of the
data pool should be displayed, and how to decode
the raw data. There are modules in the system that
store floating point values in the data pool with a
size of at least two words. To draw one point of such
a graph two words must be queried from the data
pool, and must be decoded (with the calibration
formula if it exists). A data pool field can also store
string values. The changes of these values in time
can be traced by GraphIT as well. The constructed
graph groups are displayed in different windows,
and the all configuration can be saved into file, and
reload from file. Two types of refresh modes can be

 6

assigned to the graphs. In the first mode the software
draws a new point to the graph only when the
referenced data pool area changes. In the second
mode GraphIT queries the current value from the
server periodically. The query period is adjustable
for each graph form. The displayed data can be
recorded into files for additional processing in other
external programs like Excel, Matlab, etc. Instead of
selecting a part of data pool it is possible to select
predefined Parameter Objects (PO) from a list. For
example the PO which describes a temperature value
in data pool contains the accurate position of the
temperature’s raw data in the data pool, the mask for
decoding, and the formula for the calibration.

Summary

At the design of the LSS system the
flexibility was the main aspect. Besides the current
application this system can be adapted to simulate
other complex systems. The modular structure of the
system provides the possibility for developers to
work on modules simultaneously and mainly
independently from each other. During a long
development phase in an international cooperation
like project Rosetta, it is an important advantage.
The XML based script language makes it easy to
define simulations without changing the source code
of any programs. The creation of the simulation
script files dose not require advanced programming
skills, neither from the operators who are took into
the project during the long term of the mission. The
software elements for the special tasks are mainly
independent from the simulated system. In the case
of the development of difficult modules there is an
opportunity to use a C++ API which supports the
developers to integrate a new complex module
easily into the system.

